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1. I N T R O D U C T I O N  

Taitel & Dukler (1976) proposed a two-fluid model for two-phase stratified gas-liquid flow 
in circular pipes. The complex geometry of stratified flow in a pipe prevents an exact 
analysis and this difficulty is resolved by using an equivalent diameter for the gas and 
liquid phases. The gas is treated as a flow in a closed channel bounded by the pipe walls 
and the gas-liquid interface; the liquid as a flow in an open channel bounded only by the pipe 
walls. 

The objective of the present study was to investigate the application of a similar methodology 
to stratified oil-water flows which may be compared to the exact solution for 2-D flow 
(flow between infinitely wide fiat plates) and a numerical solution for 3-D flow (flow in a circular 
pipe) for laminar flow of both fluids. It is found that where a solution of the Taitel & Dukler type 
predicts dependence of holdup on the Martinelli parameter only, the exact solution shows an 
additional dependence on the ratio of viscosity of the two phases. This can be important in 
oil-water flows, whereas in gas-liquid flows the viscosity ratio is very small and has little effect on 
the results. 

2. A P P R O X I M A T E  M O D E L  

For gas-liquid flow in a circular pipe, by eliminating the pressure drop from the gas and liquid 
momentum balances, Taitel & Dukler derived: 

where X2L is defined by 

=o,  [11 
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Similar arguments may be used for liquid-liquid flows, and here we assume that the upper phase 
is the more viscous (oil) phase. Hence the behaviour of the two phases in the pipe is effectively 
the reverse of gas-liquid flow, leading to: 
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where X~w is defined by 

X~w= D \ /~w / 2 [41 
4(70 (uo~Dpo~ -I po__U~ " 
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For a pipe flow, the dimensionless parameters will be identical to those defined by Taitel & Dukler 
(1976), except that the effective diameters of the two phases will be defined by 

/sw = (Pw + / ~ i )  and /50 -- P o  " 

For a 2-D flow, the dimensionless variables need to be calculated for the appropriate geometry, i.e. 

PL = w / B ,  AL = h w / H  2, aL = 2 / 2 L  = H/h ,  

Po = w /H ,  2 o  = ( X  - h ) w / t t  2, ao = 2 / ~ o  = ~t/(~t  - h), 

P~ = w / V ,  

where gas and liquid may be interchanged with oil and water, respectively. (Note that for 2-D flow 
the perimeters/~L,/~o and/~ are independent of the total height, unlike in the circular pipe case.) 

3. TWO-DIMENSIONAL FLOWS 

3.1. Approximate solution 

For fully developed laminar flow between flat plates the friction factor is given b y f  = 12/Re. For 
laminar flow across a flat plate, the effective distance is doubled. Thus, in gas-liquid flow the gas 
is a flow between flat plates with a separation (H - /7)  giving/SG = (1 --/7) and the liquid is a flow 
across a flat plate of depth/7 giving /st = 2/7. 

The Martinelli parameter for laminar flow reduces to 

X2 = uts/z L 1 
UGs~G = ~r~  

and [1] becomes 

( 1 - / 7 ) 3 -  (X2--27-~/72(1 + /7)=0 .  
\ GL/  

[5] 

[6] 

Using similar arguments for oil-water flow, we find that the effective diameters are/50 = 2(1 -/7) 
and/sw =/7 giving, from [3]: 

2X2w (1 -/7)2(2 - /7)  -/73 _ 0, [7] 

with the same Martinelli parameter as in [5]. The dependence of the height of the lower phase with 
the Martinelli parameter is shown in figure 1. 

3.2. Exact soluthgn 

A solution for the height of the lower layer in laminar two-phase flow between flat plates can 
be obtained from the solution of the momentum balances for the two phases: 

d2UL dp 
~,L ~ = Tzz [81 

and 

d2UG dp 
/~ ~ = ~zz' [91 

subject to the boundary conditions of no slip at the walls, and continuity of velocity and shear stress 
at the interface. This was considered by Denn (1980) and Russell & Charles (1959), and the height 
of the lower phase is given by 

/7'[(1 - / 2 ) ( / 2 ~  + 1)] + 2 / 7 3 ~ ( ~  + 3) - 21 - 3 ~ [ f l ( ~  + 3) - 21 + 4 / 7 ~  - 1) + 1 = 0. [10] 
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Figure 1. Two-phase flow between flat plates (two-fluid model calculations). 
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Figure 2, Gas-liquid flow between flat plate+ (comparison of exact solutions with the two-fluid model). 
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Figure 3. Liquid-liquid flow between flat plates (comparison of exact solutions with the two-fluid model). 
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F i g u r e  4.  Two-phase flow in a circular pipe (two-fluid model calculations). 
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Note that/~ and 0 do not always appear as the p roduc t /~ .  Therefore, h" will vary with both the 
Martinelli parameter, I/~0, and also the viscosity ratio,/~. 

The variation of the lower phase height with both the viscosity ratio and Martinelli parameter 
may therefore be easily calculated and compared to the solution given by the two-fluid model. This 
is shown in figure 2 for gas-liquid flow and in figure 3 for liquid-liquid flow. For gas-liquid flows, 
a significant deviation from the two-fluid solution is only observed at viscosity ratios above about 
0.1, which are unlikely to occur in reality. Thus, for gas-liquid flow the two-fluid solution 
represents the real behaviour well. For liquid-liquid flows, however, significant deviations are 
observed for viscosity ratios in the region of 10, which are observed in practice. 

4. THREE-DIMENSIONAL FLOWS 

The solution of the approximate equations [1] and [3] is shown in figure 4 for laminar two-phase 
(gas-liquid and liquid-liquid) flows in a circular pipe. In the circular pipe geometry, the exact 
solution is obtained from the momentum conservation equations 

d2UL d2UL 1 dp [11] 
dx-----~ + dY 2 =/~L dz 

and 

d2UG d2uG 1 dp [12] 
dx 2 t- @2 = / ~  dz" 

An analytical solution is not practically possible, and it is therefore necessary to resort to a 
numerical technique. For stratified two-phase flow in pipes, a numerical solution using bipolar 
coordinates is possible, as described by Issa (1988). The flow is assumed to be steady and 

0.8 

" ~  0.6 

0.4 

O.2 

0 
0.001 

B 
X 

I I I I I 
0.01 0.1 1 10 100 

Mmtinelli Pm'mneter 

2-Fluid Model Solutica (Gas/Liquid) • ~ = 0.001 

A ~ = 0 . 0 1  × ~ = 0 . 1  

Figure 5. Gas-liquid flow in a circular pipe (comparison of numerical calculations with the two-fluid 
model). 

10Q0 



716 

I 

0.8 

i 
O.2 

BRIEF COMMUNICATION 

0 

- • 

A • 

A • 

0 I I I I I 
0.001 0.01 0.1 1 10 I00 

Mminclli 1 ~  
1000 

A /~=10 

x ~=100 + ~=1000 

Figure 6. Liquid-liquid flow in a circular pipe (comparison of numerical calculations with the two-fluid 
model). 

fully-developed with both phases in laminar flow, with a smooth interface. The boundary 
conditions of no slip at the walls and continuity of velocity and shear stress at the interface are 
once again assumed. A bipolar coordinate grid has the advantage of matching both the pipe walls 
and the interface in this flow configuration, and thus the boundary conditions can be applied at 
exact grid locations. 

The variation of the lower phase height with the Martinelli parameter and viscosity ratio can 
be calculated relatively easily by this means, giving the results shown in figures 5 and 6. For 
gas-liquid flow, the agreement between the numerical results and the two-fluid model is good, even 
up to a viscosity ratio of 0.1, which agrees more closely than in the 2-D case. For liquid-liquid 
flows the same behaviour is observed, with significant deviation from the two-fluid model once the 
viscosity ratio falls below about 10. 

5. CONCLUSIONS 

An approximate model based on the Taitei & Dukler (1976) analysis for the holdup in flows 
between fiat plates and flows in circular pipes was derived for gas-liquid and liquid-liquid flows. 
For laminar 2-D flows, an analytical solution may be obtained, while for 3-D flows, a numerical 
solution is required. For all physically realistic gas-liquid flows, the agreement between the 
two-fluid models and the exact solution in both 2-D and 3-D geometry is very close• For oil-water 
flows where the viscosity ratio can vary from approx. 1 upwards, there is a significant deviation 
in holdup prediction for lower viscosity ratios. This deviation is smaller, however, in a circular pipe 
geometry than in the 2-D flow case. 
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